Page 1 of 6

(a)

The minimum value of A is -32. The maximum value of A is 31. A minimum of 6 bits are needed to represent this signed number.

The minimum value of |A| is 0. The maximum value of |A| is 32. A minimum of 6 bits are needed to represent this unsigned number.

The minimum value of C - A is: (-32) - (31) = -63. The maximum value of C - A is: (31) - (-32) = 63. A minimum of 7 bits are needed to represent this signed number.

The minimum value of |C - A| is 0. The maximum value of |C - A| is 63. A minimum of 6 bits are needed to represent this unsigned number.

The minimum value of M is 0 + 0 = 0. The maximum value of M is 63 + 63 = 126. A minimum of 7 bits are needed to represent this unsigned number.

(b)

If $A \ge 0$, then |A| = A and the signed representation of A is the same as the unsigned representation of |A|.

If A < 0, then the absolute value of A is the two's complement of A, which is obtained as the one's complement plus 1.

Thus, use 2:1 MUXs with the select signal equal to A_5 to select either A or the two's complement of A. See the circuit diagram on the following page.

(In the diagrams on the following pages, a circle with two inputs represents a half adder for which the vertical output is the sum and the diagonal output is the carry out. A circle with three inputs represents a full adder for which the vertical output is the sum and the diagonal output is the carry out.)

(b)-cont.

(continued on next page)

(c) - cont.

(e) For M < 32, bits M_5 and M_6 must both be 0. For M > 7, with M_5 and M_6 both 0, need at least one of the bits M_3 , M_4 to be 1.

Thus:

$$M_3$$
 M_4
 M_5
 M_6
 M_6

$$T = \begin{cases} 1 & for \ 7 < M < 32 \\ 0 & otherwise \end{cases}$$